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Abstract 
Unit selection (US) TTSs generate quite natural speech but 
highly variable in quality. Statistical parametric (SP) systems 
offer far more consistent quality but reduced naturalness due 
to its vocoding nature. We present a hybrid approach (HA) 
that tries to improve the overall naturalness combining both 
synthesis methods. Contrary to other works, the fusion of 
methods is performed both in prosody and acoustic modules 
yielding a more robust prosody prediction and achieving 
greater naturalness. Objective and subjective experiments 
show the validity of our procedure. 
Index Terms: speech synthesis, unit selection, statistical 
synthesis, hybrid system 

1. Introduction 
Since the mid 90’s US based concatenative approach has been 
the leading technique in TTS developments. “The basic unit-
selection premise is that we can synthesize new natural-
sounding utterances by selecting appropriate sub-word units 
from a database of natural speech.” [1]. In [2] a generic 
Viterbi search is proposed to find the sequence of candidate 
units from the database that minimize a cost function 
composed by target and concatenation sub-costs. Target cost 
tries to measure how well the candidate units match the 
required unit. Generally, linguistic and prosodic contexts are 
used to measure the target cost via sub-cost or decisions trees 
of pre-clustered units [3][4]. Concatenation cost measures the 
goodness of the join between two units, usually by means of 
spectral, pitch and energy distances. Units of different sizes 
have been proposed, but in general, the larger the unit the 
longer the corpus must be (or the smaller the application 
domain). The main advantage of this approach is that it 
preserves the segmental naturalness of the units achieving 
great performance in restricted domains. Several drawbacks 
can be listed though: variability in quality (just one bad join 
can spoil a whole sentence), large footprint and high cost for 
new voice generation. 

SP speech synthesis has been gaining recognition since the 
change of the century. Its premise is to synthesize speech from 
average models of acoustically similar segments. During the 
training phase, natural speech is parameterized (i.e. spectral 
and excitation parameters) and linguistic features are extracted 
in order to train context-dependent HMM models. At synthesis 
time, linguistic contexts inferred from the input text are used 
to select the appropriate models and generate speech 
parameters which are finally turned into speech by means of a 
vocoder. In [5] a minimum generation error training method is 
proposed aimed at improving the synthesis quality. See [6] for 
a detailed review of the improvements made in both statistical 
modeling and speech parameterization during the last decade. 
The main advantages of this approach are its consistency, its 
flexibility and its small footprint. It generates smooth and 
stable speech with good generalization properties. Besides, the 
statistical modeling offers the possibility to easily transform 

voices and styles through various techniques (i.e. adaptation, 
interpolation, multiple regression, and eigenvoices). The 
disadvantages are the following ones: vocoding quality 
(decreased naturalness, buzziness) and statistical over-
smoothing. 

Several efforts have been made to combine the strong 
points of both techniques in a hybrid TTS, most of which are 
based on the concatenative approach. Some works [7][8][9] 
have chosen statistical modeling for prosody generation that 
then feeds the acoustic module. In [10] HTS [11] is used to 
generate acoustic parameters as target frames during the 
Euclidean distance based US process. In [12] they depend 
solely on spectral parameters to select the most similar 
diphone candidates. In order to reduce the computational cost, 
Kullback-Leibler divergence between target and candidate 
HMMs is used in [10][13] at the unit pre-selection stage. 

Other works have attempted to combine both techniques in 
the waveform generation. That way, they try to preserve the 
quality of natural segments while applying modeled speech 
when appropriate candidates are missing in the database. 
However, if there is a noticeable change in voice quality at 
switching points the results might even worsen [14]. In [15] a 
dynamic programming stage decides the best sequence of 
natural or statistically generated units. In order to reduce 
combination artifacts, acoustic parameters are regenerated 
adjusting the variance to that of the best all-natural sequence. 
In [16], to prevent single unsuitable units from being selected 
a Robust Viterbi Algorithm [17] is employed. Unsuitable units 
are then substituted by modeled speech. Both natural and 
modeled segments are reconstructed with a vocoder so as to 
reduce the quality variation. In [18] a different proposal is 
presented aimed at improving the quality of HMM based 
synthesis. First, a US is performed at state level among the 
natural units available at leafs of trained HTS trees. Then, the 
mean and variance of natural units are utilized to regenerate 
the modeled acoustic parameters by minimizing the local 
generation error. 

In this paper, we present a hybrid TTS based on the 
concatenative approach. Contrary to the aforementioned 
works its architecture combines US and SP synthesis in both 
prosody and acoustic modules. In section 2 a brief description 
of our baseline and HTS-based systems is presented. Section 3 
explains the combination of both techniques in the 
construction of a hybrid TTS. Subjective and objective 
evaluation results are shown in Section 4. And finally, some 
conclusions are drawn. 

2. Aholab TTS system 
AhoTTS [19] is the synthesis platform for commercial and 
research purposes that Aholab Laboratory has been 
developing since 1995. It has a modular architecture, and 
written in C/C++ it is fully functional in both UNIX and 
Windows operating systems. Up to this date, synthetic voices 
for Basque, Spanish and English have been developed. Next, 
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we describe the main characteristics of our baseline system 
and the HTS-based TTS. 

2.1. Baseline unit selection system 
It consists of several independent modules. The first one 
performs various language dependent tasks: Text 
normalization, POS tagging, syllabification and grapheme to 
phoneme conversion. 

The prosody module performs several sequential tasks. In 
duration prediction Random Forest (RF) [20] zscore models 
are trained for vowels and CARTs for consonants. Our US 
intonation modelling uses the voiced phoneme as the basic 
unit in a similar approach to [21], restricting concatenations 
inside syllables. Refer to [22] for a more detailed description 
of this sub-module. If the corpus is labeled with Intonation 
Break (IB) marks [23] a CART is trained for IB prediction  
using simple features such as: POS tagging in a three word 
window, and the number of syllables, stressed syllables, and 
words to previous and next breaks (IB or pause). Then, IB 
information at phoneme, syllable and word level is applied in 
duration and intonation prediction, and it improves their 
accuracy as it is shown in section 4.1. 

See [22] for a detailed review of the features and sub-cost 
design employed in the acoustic engine. After US, only minor 
prosody modifications are done by means of pitch 
synchronous overlap and add techniques. 

2.2. AhoHTS: HTS-based system 
As HTS does not perform any kind of linguistic analysis, the 
output of the first module of AhoTTS had to be translated into 
proper labels containing phonetic and linguistic information. 
See [24] for a detailed list of the kind of features encoded into 
context labels. In order to extract the frame wise parametric 
representation of both the spectrum and the excitation, an 
HNM (Harmonics plus Noise Model) based vocoder is used 
[25]. This vocoder allows the reconstruction of speech too. 

3. Hybrid TTS 
The architecture of the hybrid system is shown in Figure 1. In 
short, HTS output is used as target prediction in the US 
module. Intonation and duration predictions from HTS are 
combined with the ones predicted by the AhoTTS prosody 
module and spectrum parameters are used in order to calculate 
the distance between target and candidate units. This HA tries 
to combine the robustness of the average modeling with the 
segmental quality of natural speech units. 

3.1. Prosody module 
As far as the prosody prediction module is concerned, most 
HAs just rely on HMM’s prediction. However, better duration 
prediction can be achieved through the fusion of different 
techniques [26]. Besides, in [10] they got the best MOS (Mean 
Opinion Score) by imposing an external duration to the HMM-
based intonation curve. 

In our HA, a linear combination of HTS and CART/RF 
duration predictions is performed. Objective measures that 
show the improvement are presented in section 4.1.1. It must 
be emphasized that the duration fusion is bidirectional (i.e. the 
output feeds both standard prosody module and the HMM 
parameter generator). First, phone duration is predicted inside 
HTS engine. Then, that prediction is linearly combined with 
the one from the standard prosody module and forced at phone 
level. Finally, HTS predicts the length of each state inside the 

already predetermined phone length. What we manage to do 
with this operation is to ease the time synchronization for later 
intonation and spectral comparisons inside the acoustic 
module. If this procedure is followed, informal listening tests 
show an improvement in the naturalness of the HTS-based 
system too. 

The fusion of the two intonation curves is performed in 
several stages. First, f0 values are interpolated in unvoiced 
regions and both curves are segmented at phone level 
preserving only the f0 values of canonically voiced phonemes. 
For each voiced phoneme a 3 point pitch stylization is 
performed. Finally a weighted linear combination is 
performed between aligned phone sized pitch portions. This 
simple approach yields slight improvements in objective 
measures as shown in section 4.1.2 and statistically significant 
ones in subjective tests as indicated by the subjective black-
box measures in section 4.2. 

In the prosody fusion process explained above, weights of 
the linear combination were manually tuned, giving more 
relevance to the HTS pitch prediction and to the CART/RF 
duration prediction respectively, according to the results of 
objective tests presented in section 4.1. 

 

 
Figure 1: Hybrid TTS Architecture. 

3.2. Acoustic module 
During the US process, most hybrid TTSs rely solely on the 
acoustic trajectories generated by the SP system. Contrary to 
that option, we maintain the usual linguistic and prosodic 
target sub-cost of the baseline system, and we just add a new 
sub-cost:  
Spectral Distance: Frame based Euclidean distance between 

target (HTS output) and candidate units after DTW [12] 
alignment. The distance is manually weighted according to 
three reduced phonetic classes: vowels, voiced and 
unvoiced consonants. 
The main advantage of this approach is that selecting the 

units by means of modeling both explicitly (HTS) and 
implicitly (target sub-cost) their acoustic similarity, seems a 
more robust procedure. One of the key contributions of the 
spectral distance is to prevent “bad units” (i.e. wrongly labeled 
or poorly pronounced) from being selected, achieving more 
consistent synthesis. As the computation of spectral distances 
is especially time-consuming, in a pre-selection stage only 
linguistic and prosodic (and therefore much less complex) 
target sub-cost are used, speeding up that way the synthesis 
process. 

4. Evaluations 
In order to test the performance of the new hybrid system, a 
Spanish voice was built. The corpus consisted of two hour 
recordings of male voice in neutral style at 16 kHz, and it was 
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kindly provided by organizers of the Albayzin 2010 TTS 
evaluation campaign [27]. Additional material included 
automatic segmentation and IB labels. After having 
automatically refined the segmentation labels, the usual voice 
building process was performed for our standard US TTS. As 
far as SP voice is concerned, HTS demo scripts were applied 
after having parameterized the signals with the vocoder 
aforementioned in section 2.2 (obtaining 40 MFCC + f0). 

To assess the quality of the hybrid system both objective 
and subjective evaluations were carried out. 

4.1. Objective evaluations 
The organizers of Albayzin 2010 TTS evaluation, distributed 
the recordings of 350 natural sentences used during the test 
(not seen during the voice building) once the campaign had 
ended. This data was automatically segmented and intonation 
curves were obtained combining three different pitch detection 
algorithms (pthcdp [28], praat and get_f0). Then, natural 
prosody and synthetic predictions were compared for different 
prediction approaches. Three common figures of merit were 
used between the predicted prosodic feature and the natural 
reference: Root Mean Squared Error (RMSE), Mean Absolute 
Error (MAE) and Pearson Correlation Coefficient. Being 
RMSE more sensitive to outliers, it is also useful to estimate 
the degree of gross errors produced. 

4.1.1. Duration prediction  

The four candidate prediction errors are displayed in Table 1. 
A Wilcoxon signed rank test (�=0.05) showed that the 
differences among all the methods were statistically 
significant for the three figures of merit. HTS duration 
prediction offers the poorest performance but its combination 
within the hybrid method improves the prediction of the 
CART+RF method alone. Besides, IB information seems to 
boost the effectiveness of the prediction for all the methods 
(although shown only for the hybrid one). IB is an important 
phenomenon that can be related to phoneme duration (i.e. 
phoneme lengthening), intonation curve (i.e. f0 reset) or 
spectral characteristics (i.e. relaxed pronunciation). And 
although its prediction suffers from some false insertions, 
being a subtle event (at least compared with the pause 
insertion), such errors seem not to have a dramatic impact in 
the prosody prediction. 
 

 RMSE (ms) MAE (ms) Pearson 
CART+RF with IB 18.09 11.78 0.767 

HTS with IB 20.78 14.28 0.681 
Hybrid with IB 17.95 11.84 0.768 
Hybrid w/o IB 18.37 12.16 0.720 

Table 1. Phone duration prediction compared with the 
reference for different methods. 

4.1.2. Intonation contour prediction 

Prior to compare the synthetic and natural contours, a time 
alignment is performed at voiced phone level and pitch values 
are extracted every 1ms. The same three measures employed 
for duration are used in Table 2. 

Even if the hybrid method slightly improves the 
performance of the HTS prediction, Wilcoxon sign rank test 
shows that the difference is not statistically significant (the 
differences for all the other methods are significant). Once 
more, IB information improves the results and IB-related 
features play a quite important role in the HTS f0 trees. Our 

US intonation module offers the poorest results in the 
objective measures, but it is designed in combination with the 
US acoustic module, so it tends to select pitch ranges closer to 
the specific context phonemes available in the corpus. Taking 
into account that our acoustic module only makes minor 
prosodic changes so as to keep the segmental naturalness, 
further black box subjective evaluations have been carried out 
to compare the influence of hybrid and HTS prosody in the 
synthesized signal. The results are presented in section 4.2.  

 

 RMSE (Hz) MAE (Hz) Pearson 
US with IB 9.85 7.26 0.606 

HTS with IB 9.03 6.74 0.741 
Hybrid with IB 8.19 6.11 0.752 
Hybrid w/o IB 9.89 6.99 0.699 

Table 2. Pitch prediction compared with the reference 
at voiced phones for different methods. 

4.2. Subjective evaluations 
A black box experiment was carried out comparing three types 
of prosody modules: US (CART+RF duration and US pitch), 
HTS (duration and pitch) and the HA, all of them using the 
same hybrid acoustic module. 27 subjects (including 6 
experts) took part in a randomized preference test over 10 
randomly selected news sentences. They were asked to choose 
the preferred signal according to its naturalness in a 5 value 
CMOS (Comparative MOS) scale ranging from -2 (I clearly 
prefer the first one) to 2 (I clearly prefer the second one). 
Results are displayed in Figure 2. HA is the preferred method 
getting 0.63 CMOS versus HTS and 0.31 versus US. 95% CI 
(Confidence Interval) locates the mean interval above 0 in 
both cases. Therefore HA is slightly preferred over the other 
two methods and the results have statistical significance. 
Overall, 50.3% of the responses preferred the HA whereas 
only 19.7% preferred one of the other two methods. 

Looking at the prediction error values in Table 2 it might 
seem surprising that the perceptual difference between US 
prosody and the HA one is smaller than respect to HTS. As 
mentioned before, the US prosody is designed jointly with the 
acoustic engine and it must be noted that the subjects were 
evaluating the overall naturalness of the signal. Furthermore, 
as there are multiple equally natural prosodic realizations and 
subjects evaluate the intonation as a whole (not locally) [30], 
objective results related to this aspect must be taken with care. 

�2 �1 0 1 2

US vs HTS

US vs HYBRID

HTS vs HYBRID

CMOS  
Figure 2: CMOS test for 3 prosody methods, with 95% CI. 

We submitted our hybrid and HTS-based systems to the 
Albayzin 2010 TTS evaluation campaign that compares 
different systems built on a common Spanish database. Its 
design is based on the Blizzard Challenge [29] contest for 
English and Mandarin. 132 listeners took part in the 
evaluation process. Our hybrid system stood out in all the 
three evaluation tasks: similarity to the original voice (4.07 
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MOS), naturalness (3.71 MOS) and intelligibility (17% 
WER). Figure 3 displays the naturalness results of our hybrid 
and HTS-based systems for different groups of evaluators or 
equipment used. The average system consists of the mean 
scores of all the synthetic systems. Wilcoxon test showed that 
our hybrid system was significantly better than the rest of the 
synthetic systems in the naturalness task. Besides, there were 
no statistical differences with respect to the systems with best 
scores in the remaining ones. Results show that using 
loudspeakers instead of headphones significantly reduces the 
gap between Hybrid and HTS-based systems. 

1

1,5

2

2,5

3

3,5

4

4,5

5

All Experts Non�Experts Headphones Loudspeakers

M
O

S

Types of Listeners

Hybrid HTS�based Average

 
Figure 3: Naturalness for different listeners. 

5. Conclusions 
US TTSs produce a natural-sounding speech in limited 
domains, but artifacts and glitches tend to appear as the 
domain is extended. In order to improve the consistency while 
maintaining the naturalness a HA is proposed. Two prosody 
predictions are fused and the spectral prediction from a HTS-
based system is used in the US module. Objective and 
subjective measures show the validity of the approach. The 
HA has succeeded in improving the consistency that our 
standard US TTS sometimes lacks. Combining two prediction 
methods has produced a more robust prosody (e.g. with less 
gross errors). And including the spectral parameters generated 
by the SP TTS in our acoustic module has also alleviated the 
selection of “bad” units. The same explanation could apply to 
the good performance showed in the intelligibility task, where 
usually SP TTSs get the best results in small databases. 
Looking at the results of Albayzin 2010 TTS evaluation, it 
must be stated that there is still a considerable gap between 
natural and synthetic voices, as all the synthetic systems got 
significantly worse results than the natural voice. 
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