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Abstract
In this paper a novel set of features with a promising ability to 
identify speakers is presented. These features are based on the 
harmonic phase of the speech signal and have been previously 
used successfully in an ASR task. Using the SI-284 subset of 
the WSJ database, a GMM has been trained for each of the 
283 speakers and several speaker identification experiments 
have been performed, with a high level of success. The feature 
extraction method and the performed experiments are 
described. The results show that the features present excellent 
identification performance, very close to the performance of 
the MFCC parameters. 
Index Terms: Speech analysis, Phase analysis, Speaker 
recognition, Speaker modeling, Harmonic modeling. 

1. Introduction
Conventional speaker recognition (SR) methods use short time 
spectral information to model the speaker specific vocal tract 
parameters. From this spectral information, typically only the 
magnitude spectrum is used and the phase component is 
ignored. Magnitude information is directly related with 
spectral power density, and therefore with the formant 
structure and intelligibility, and it can be parameterized in a 
relatively easy way. However, the use of other kinds of 
features has also proved useful in a speaker recognition 
problem. In [1] parameters extracted from the glottal flow 
derivative are used to identify speakers. Parameters derived 
from the residual phase extracted using linear prediction 
analysis were used in [2] and [3], both in isolation and in 
combination with MFCC features, offering significant 
improvements. The Modified Group Delay function derived 
from the phase spectrum has also been used and many recent 
works report significant improvements of the recognition rate 
when used in combination with MFCC parameters [4][5][6]. 
In [7] and [8] a phase information extraction method is 
proposed and great improvements in the recognition rate are 
obtained when this information is used in combination with 
MFCC parameters. 

In this paper we present a new set of parameters also 
derived from the phase of the speech signal. The used 
parameters are derived from the so called Relative Phase Shift 
[9], which was first successfully used in a speech polarity 
detection problem [10]. The parameterization of the RPS using 
the Discrete Cosine Transform (DCT) was proposed in [12] to 
improve the performance of an ASR system. This 
parameterization was also used to detect synthetic signals in a 
problem of imposture in a speaker verification framework 
[11]. In this work we present the results of a set of 
experiments that demonstrate the ability of this new 
representation of the phase to capture speaker specific features 
and thus to identify the speaker. The results show that the 

parameters used are almost as powerful as the MFCC in our 
experimental set-up. 

2. The DCT-mel-RPS Representation 
The Relative Phase Shift is a representation for the harmonic 
phase information and was first described in [9]. In this 
section we present the process followed to obtain the 
parameters used to train the speakers’ models.  

2.1. Definition of the Relative Phase Shift 
Harmonic analysis models each frame of a signal by means of 
a sum of sinusoids harmonically related to the pitch or 
fundamental frequency: 
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where N is the number of bands, Ak and �k(t) are the 
amplitudes and instantaneous phases of the harmonics, f0 is the 
pitch or fundamental frequency, and �k is the initial phase 
shifts of the k-th sinusoid. 

Usually the term “phase” is applied to the whole 
instantaneous phase of every sinusoid, �k(t), instead of the 
initial phase shift �k. This instantaneous phase changes 
depending on the analysis instant as well as on the frequency 
of the harmonic, due to the linear phase term 2�kfot. On the 
contrary, the initial phase shift �k is constant while the 
waveform shape is stable under the assumption of local 
stationarity, regardless of the time instant chosen for the 
analysis. 

The initial phase shift determines the waveform shape of 
the signal. For a given set of harmonic sinusoids the resulting 
waveform shape depends only on the differences between the 
initial phase shifts �k of the components, which we call 
Relative Phase Shifts (RPS). These RPSs are also constant as 
long as the initial phase shifts are so. Thus, they can be 
calculated at any analysis point wherever local stationarity 
conditions can be assumed, avoiding the necessity of 
determining any special point for the analysis. Being relative, 
the RPSs are computed using a common reference (f0). 

We have developed an expression to obtain the relative 
differences of the initial phase shifts from the measured 
instantaneous phases. Let us consider two sinusoids:
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where x1(t) will be a reference sinusoid with frequency f1 

and xk(t) another sinusoid with frequency fk > f1. For the sake 
of simplicity we will consider �1=0, which implies setting the 
time origin at the point where x1(t) has instantaneous phase 
zero. For any arbitrary analysis point (ta) the instantaneous 
phases are: 
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In the case of harmonic analysis, f1 will be the 
fundamental frequency f0 and the frequencies of the two 
sinusoids will be harmonically related, so fk=kf1. Applying this 
condition, we get the RPS expression: 

� � � �1k k a at k t� � �� 
     
(4)

 
Finally the RPS is wrapped to values in the [-�, �] interval. 
Among other interesting properties of the RPS a major 

feature is that it reveals a structured pattern in the phase 
information of the voiced segments. This can be noticed in 
Figure 1 which shows a “RPS phasegram” that, as its 
magnitude counterpart the spectrogram, shows the evolution 
along time of the RPS for each harmonic. Figure 1 shows a 
phasegram of the voiced speech segment of five sustained 
vowels /aeiou/, where the stable pattern of every vowel can be 
clearly distinguished.  

Despite the defined and clear looking of the RPS patterns, 
they can not be directly employed as parameters in a GMM 
based SR system. There are several points that need to be 
addressed, and they are discussed next in this section. 

2.2. Unvoiced speech frames 
There is no meaningful RPS for unvoiced speech. In the 
unvoiced segments of the speech there is no valid reference 
(f0) to base the RPS calculations. Furthermore, in unvoiced 
segments the excitation signal is supposed to be a random 
signal, whose phases will be random, and this will mask the 
phase structure of the vocal tract. This lack of meaningful 
information in the unvoiced segments is not only a problem of 
the RPS transformation, but also an inherent problem of the 
random phase signals which hinder the effect of the phase 
response of the filter. Because no temporal information will be 
used in the speaker recognition experiments described next, 
unvoiced frames will be eliminated, and only voiced frames 
will be considered. 

2.3. RPS envelope features 
In order to parameterize the RPS data by frame it is necessary 
to analyze the usual shape of the RPS function across the 
frequencies in different segments of different speakers.  

First the problem of wrapping arises: the RPS values are 
wrapped values given in the range [-�,�] which produces 
discontinuities in the frequency axis. Unwrapping is 
performed in order to get a smooth function that can be 
parameterized by a reduced number of values. But 
unwrapping is an ambiguous operation that can produce very 
different results for similar data. This suggests the use of 
differentiated unwrapped RPSs as source information for the 
parameterization.  

Figures 2a and 2b show the unwrapped RPS envelope for 
several consecutive frames of the same vowel uttered by two 
male speakers. Figures 2c and 2d show the differentiated RPS 
envelopes, where common features between both speakers can 
be more easily appreciated, in particular the phase jumps at 
the formant frequencies. However, it is also clear from Figure 
2a and 2b that each speaker presents a very different slope of 
the RPS envelope, which is seen as an offset in the 
differentiated RPS. This property can help in the 
characterization of the speakers. Therefore we explicitly add 
the value of the average slope (the average value of the 
differentiated RPS) as a parameter. In order to avoid 
redundant information in the parameterization, and to make it 
easier to compare the shape of the RPS envelopes, this offset 
is subtracted in the differentiated RPS envelope. 

2.4. Variable number of parameters and 
dimensionality reduction  
The number of RPS values varies from frame to frame as it is 
dependent on the number of pitch harmonic components that 
fit in the analyzed spectral bandwidth, which varies with the 
pitch value. For usual pitch values, the number of harmonic 
components is too high, forcing high dimensionality models if 
used directly. 

To cope with this situation, the differentiated RPS data are 
filtered using a normalized Mel filter bank, where the number 
of filters can be fixed according to the sampling frequency. 
For 8 kHz sampling frequency, 32 filters have been used. This 
non-uniform averaging of the harmonic phase values produced 
better results than other linear approaches in an ASR task [12]. 

The DCT has been frequently employed in the literature to 
parameterize both magnitude and phase data to be used in 
ASR models. This transformation decorrelates the elements of 
the feature vector, making it suitable for diagonal covariance 
matrix statistical models. At the same time, the DCT 
successfully reduces the number of parameters needed to 
model speech. We also use the DCT even though the spiky 
shape of the differentiated unwrapped RPS worsens the DCT 
modeling capability. 

3. Experiments
This section presents the experiments carried out in order to 
assess the effectiveness of the proposed parameterization in 
SR tasks performed. First the database and the classifier used 
are described. Then the performed experiments and results are 
commented.  

3.1. Evaluation setup 
To evaluate the behaviour of the new set of parameters the 
Wall Street Journal database [13] has been selected. The use 
of this database has been considered appropriate for our 
purposes, mainly because it is a clean speech database, 
microphonic, it contains a large number of speakers and a 
sufficient amount of recordings from each speaker. In this 
way, problems related to data scarcity or noisy conditions are 
avoided, and the focus is centred on the performance of the 
parameters.  

From this database the part known as SI-284 has been 
selected. It contains utterances read by 283 speakers with a 
Sennheiser microphone sampled at 16 kHz. In the experiments 
described here, the signals were downsampled to 8 kHz. The 
amount of speech available for each speaker is variable, 
ranging from 100 to 150 utterances. The utterances are also of 
different lengths, with durations ranging from 5 to 8 s each.  

 
Figure 1: RPS phasegram of a voiced speech signal 

/aeiou/. 
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The database has been randomly divided into a training set 
(60% of the utterances) and a testing set (40%).  

A classic classifier based on GMM has been used [14]. 
One GMM with 32 mixtures and diagonal covariance matrices 
has been trained for each speaker, using varying training time 
lengths and different number of parameters. The number of 
Gaussians was experimentally determined. In all the 
experiments presented here, the whole testing set has been 
used. One important consideration is that in the experiments 
that use the phase parameters, only voiced frames are used 
both for training and testing. On the contrary, the MFCC 
baseline experiments use all the available non-silent frames. 

Speaker identification is performed based on maximum 
likelihood:  

� �)/(logmaxarg jij p 
X     (5) 

where Xi is the feature vector sequence {xn}i for the test 
speaker i and 
j is the GMM trained for speaker j. The log-
probability is calculated for N test feature vectors as: 
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1
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3.2. Experiments and results 
As this was the first time that this set of parameters was used 
for this task, we focused on the evaluation and optimization of 
the feature vector rather than on the development of the 
classifier. 

On account of the great variability of the sentences lengths 
and to obtain a more solid score, the process of training the 
models with a reduced number of sentences N consisted on 
making as many groups of N sentences as possible with the 
training sets, and then averaging the results. 

The phase feature vector is formed by the average slope 
obtained as explained in section 2, together with a number of 
coefficients from the DCT of the differentiated unwrapped 
RPS envelope. The first set of experiments was directed to 
estimate the number of DCT parameters needed, and for that 
purpose a series of experiments was performed using all the 

available training frames. As a first approximation, the 
number of DCT coefficients was truncated to 20, using a 
criterion based on the reconstruction error. After some tests, it 
was observed that if the training time was not limited, a very 
accurate identification was possible. As shown in Table 1, 
100% success is obtained with only 4 DCT parameters. 

However, limiting the training time degrades significantly 
the performance of the system. It has to be considered that 
only voiced frames are used both for training and testing. This 
implies that approximately 60% of the non-silent frames are 
used (i.e. 60% of the number of frames used by the baseline 
MFCC system).  

As can be seen in Table 1, using the full set of parameters 
100% accuracy is achieved when training with only 10 
utterances (50 to 80 s depending on the speaker and the set of 
sentences). A further reduction of the training time to 5 
utterances causes the accuracy falling down to 98.2%.  

An interesting result is the performance of the system 
using only one parameter: the slope of the unwrapped RPS 
envelope (represented as S in Table 1). It is clear that 
important information about the speaker identity is kept in this 
slope: when used in isolation and with a sufficient number of 
training frames an accuracy of 93.6 is achieved. However, the 
contribution of the DCT coefficients is also very relevant as 
show the results for 4 DCT set in Table 1. 

Finally, the results of a fusion experiment of spectral 
envelope and phase parameters (MFCC+S+20) are shown in 
the last row of Table 1. This experiment also uses 32 mixtures 
for the models. The use of the additional information is not 
able to improve the performance of the MFCC parameters in 
isolation.  

Further experiments developed using still less number of 
training sentences revealed as expected a fast degradation on 
the performance of the phase based system. The MFCC 
baseline system on the contrary remains quite robust up to as 
few as 2 sentences (95% identification rate). At this point we 
have to remember again that the phase parameters are based 
on the harmonic phase, which is not meaningful for unvoiced 
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Figure 2: a-b Unwrapped RPS envelope of several consecutive frames for two speakers. c-d differentiated unwrapped RPS 

envelope for two speakers. 
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frames, which means that for so small amount of time an 
insufficient number of frames are used for training.  

The fact that the baseline experiment produces so good 
results reveals that this task is an easy one, mainly because it 
is a very clean database. However, up to now, no other set of 
parameters based on the phase of the signals, and with no use 
of the envelope has been described that presents a 
performance comparable to that of MFCC. Other phase 
representations described in the literature achieve important 
improvements over the baseline, only when used in 
combination with it. The novelty of our system is that it shows 
a comparable performance when used by itself, even with the 
handicap that only approximately 60% of the time is useful. 

4. Conclusions
A novel parameterization method capable of discriminating 
speakers’ identity has been presented. The experiments and 
results presented in this paper are preliminary and do not 
pretend the implementation of a realistic Speaker 
Identification or Verification System: a very simple detection 
method has been used and the signals tested fulfilled ideal 
conditions. The phase spectrum has already been used in 
previous works cited above. However, our proposal deals with 
the phase in a completely novel way, leading to 100% 
accuracy under ideal conditions, with a performance very 
close to the MFCC static parameters.  

Many open questions remain: how will the performance of 
the parameters under noisy conditions be? Will the parameters 
be robust to channel distortions? Is there a better 
transformation other that the one proposed? Communication 
channels nowadays introduce coding stages that distort the 
phase of the signal, and it is unknown to us yet up to what 
point the speaker identification features remain in the 
transcoded signal. On the other hand, the parameter set should 
be evaluated in a more standard verification task following 
NIST procedures and databases. Most of these databases are 
telephonic databases, where the first harmonic f0 is missing. 
Therefore a new reference frequency must be used. The 
properties of the phase representation in that case pose new 
challenges and have not been investigated yet. In any case, an 
interesting research space has been opened in the speaker 
characterization field. 
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Table 1. Speaker identification rate (%) for different 
number of training utterances (N) using different 

parameter sets (S: average slope of the RPS envelope) 

Parameters N=all N=15 N=10 N=5 
MFCC 100 100 100 99.8 
S+20 DCT 100 100 100 98.2 
S+4 DCT 100 98.6 97.5 88.3 
4 DCT 100 98.2 96.8 78.8 
S 93.6 52.3 41.7 25.8 
MFCC+S+20DCT 100 100 100 99.8 
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